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Pseudoelastic SMA Spring Elements for Passive Vibration 
Isolation: Part I - Modeling 
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ABSTRACT: In this work, the effect of pseudoelastic response of shape memory alloys 
(SMAs) on passive vibration isolation has been investigated. This study has been conducted by 
developing, modeling, and experimentally validating a SMA-based vibration isolation device. 
This device consists of layers of preconstrained SMA tubes undergoing pseudoelastic 
transformations under transverse dynamic loading. These SMA tubes are referred to as SMA 
spring elements in this study. To accurately model the nonlinear hysteretic response of SMA 
tubes present in this device, at first a Preisach model (an empirical model based on system 
identification) has been adapted to represent the structural response of a single SMA tube. The 
modified Preisach model has then been utilized to model the SMA-based vibration isolation 
device. Since this device also represents a nonlinear hysteretic dynamical system, a physically 
based simplified SMA model suitable for performing extensive parametric studies on such 
dynamical systems has also been developed. Both the simplified SMA model and the Preisach 
model have been used to perform experimental correlations with the results obtained from 
actual testing of the device. Based on the studies conducted, it has been shown that SMA- 
based vibration isolation devices can overcome performance trade-offs inherent in typical 
softening spring-damper vibration isolation systems. This work is presented as a two-part 
paper. Part I of this study presents the modification of the Preisach model for representing 
SMA pseudoelastic tube response together with the implemented identification methodology. 
Part 1 also presents the development of a physically based simplified SMA model followed by 
model comparisons with the actual tube response. Part II of this work covers extensive 
parametric study of a pseudoelastic SMA spring-mass system using both models developed in 
Part I. Part II also presents numerical simulations of a dynamic system based on the prototype 
device, results of actual testing of the device and correlations of the experimental cases with 
the model predictions. 

Kev Words: shape memory alloys (SMAs), pseudoelasticity, hysteresis, Preisach, system 
identification, passive vibration isolation, damping, dynamic system 

INTRODUCTION 

THE task of damping and vibration isolation is often 
faced with trade-offs. The goal of vibration isola- 

tion is commonly accomplished by using an isolation 
system with a relatively softer stiffness (Beranek and 
Ver, 1992). However, for isolation of heavy loads, 
a small stiffness leads to large displacements. This large 
displacement obstacle has often been overcome by using 
a device having a nonlinear spring with decreasing 
stiffness, like a softening spring. Such a device would 
have a stiff initial response which becomes less 
stiff as the load is increased, so that the stiff region 
of the device's response supports the initial load and 

•Author to whom correspondence should be addressed. 
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the transmissibility is reduced by the softer stiffness of 
the nonlinear spring in the operating range. One of the 
problems encountered in vibration isolation using a 
nonlinear spring is its resonant behavior at low excita- 
tion frequencies due to softer stiffness in the operating 
range. This condition results in the necessity to add 
damping to the system, which has the desired effect 
of decreasing the resonant response but also degrades 
the response of the system at higher frequencies as 
shown by Harris (1996) and Inman (2001). 

To eliminate these trade-offs one can use active 
materials integrated into smart structures. One such 
option is to use Shape Memory Alloys (SMAs) as the 
behavior of devices with decreasing stiffness and a 
damper is similar to the hysteretic load-deflection 
relationship exhibited by SMAs during pseudoelastic 
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deformation (Wayman, 1983; Otsuka and Shimizu, 1986) 
as discussed later. 

Review of Pseudoelastic SMA-based Dynamic Systems 
for Damping and/or Vibration Isolation 

The SMA pseudoelastic behavior is defined as 
inducing detwinned martensite (Af) from austenite (A) 
by thermomechanical loading, which then reverts to 
austenite upon removal of the mechanical load. The 
presence of stress forces austenite to directly form 
detwinned martensite, resulting in large macroscopic 
strains, which can be fully recovered upon unloading to 
the zero-stress state, provided the temperature is kept 
above a certain level (Wayman, 1983; Miyazaki et al., 
1997; Otsuka and Wayman, 1999). Figure 1 represents 
a schematic of a typical SMA phase diagram, showing 
the relationship between stress, temperature, and the 
two possible phases of the SMA. Schematic of a typical 
pseudoelastic loading path as discussed above is also 
shown. The transformation temperatures at the zero- 
stress state are represented as A/0*, A/°-f,/40*, and AQf 

in Figure 1 representing martensitic start, martensitic 
finish, austenitic start, and austenitic finish tempera- 
tures. In addition to the change in material properties 
and large recoverable" strain during pseudoelastic 
transformation, there is hysteresis which is an indicator 
of energy dissipation during the forward (A-+ M) and 
reverse (M -* A) transformations (Figure 1(b)). This 
energy dissipation is proportional to the degree of 
transformation completed during a loading cycle for 
both complete and incomplete, or partial transforma- 
tions. These partial transformations are also referred to 
as minor loop hysteresis cycles (Bo and Lagoudas, 1999a) 
and complete, or full transformations are referred to as 

major loop hysteresis cycles. The energy dissipation due 
to hysteresis provides an opportunity for SMAs to be 
used as damping devices and the change in the stiffness 
(represented by Points 1,2,3, and 4 in Figure 1(b)) of the 
material during pseudoelastic phase transformations 
provide opportunities for SMAs to be used as vibration 
isolation devices. 

The nature of the pseudoelastic effect, as discussed 
above and illustrated in Figure 1(b), indicates the 
possibility of using SMAs for vibration isolation. 
Utilization of SMAs for such applications requires 
understanding of the pseudoelastic nonlinear hysteretic 
response found in SMAs. Graesser and Cozzarelli (1991) 
introduced a model for SMA hysteretic behavior, an 
extension of the rate independent hysteresis model 
introduced by Özdemir (1976) to model pseudoelastic 
behavior of SMAs for potential structural damping and 
seismic isolation applications. A study on the use 
of SMAs for passive structural damping is presented 
in Thompson et al. (1995), where three different quasi- 
static models of hysteresis were reviewed and compared 
with an experimental investigation of a cantilevered 
beam constrained by two SMA wires. Fosdick and 
Ketema (1998), have considered rate dependency by 
including "averaged" thermal effects in the SMA 
constitutive behavior. Their constitutive model is based 
on dynamics of single-crystal phase boundaries by 
Abeyaratne and Knowles (1994), and they have studied 
a single degree of freedom (SDOF) lumped mass 
oscillator with a SMA wire attached in parallel as 
a passive vibration damper. Seelecke (2002), in a recent 
publication has considered both isothermal and 
nonisothermal SMA constitutive response caused by 
rate-dependent release and absorption of latent heat 
during phase transformations by using a modified 
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(a) (b) 
Figure 1.   (a) Schematic of a typical SMA phase diagram with a typical pseudoelastic loading path noted in stress-temperature space; 
(b) schematic of the corresponding pseudoelastic loading path in stress-strain space. 
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version of the model presented by Achenbach and 
Muller (1985). In Seelecke (2002), free and forced 
vibrations of a rigid mass suspended by a thin-walled 
SMA tube under torsional loading has been considered 
under isothermal conditions. For nonisothermal condi- 
tions, only free vibrations have been considered and 
it has been shown that under a free vibration case for 
such a system, isothermal SMA constitutive response 
may lead to underestimation of damping and resulting 
forces compared to a nonisothermal SMA constitutive 
response. 

Yiu and Regelbrugge (1995), have investigated the 
behavior of SMA springs designed to act as an on-orbit 
soft mount isolation system with the added benefit of 
precision alignment through the utilization of the SMA 
shape memory effect. Yiu and Regelbrugge (1995) have 
used a physically based SMA model identified from a 
SMA helical spring response. In the work done by Feng 
and Li (1996), the dynamics of a SMA bar in a SDOF 
spring mass damper system is presented, where the 
modified plasticity model presented in Graesser and 
Cozzarelli (1991) is used to model the pseudoelastic 
response of a SMA bar. Key results of this work 
includes that the nonlinearity due to phase transforma- 
tion leads to complicated dynamics like period doubling 
cascade and chaotic motion.  Other results include 
low resonant frequency for such a system along with 
a suppressed peak response. Experimental results have 
also   been   presented   for   such   a  system   verifying 
qualitative predictions of the theory. A recent study by 
Lacarbonara et al. (2001) have studied periodic and 
nonperiodic thermomechankal response of a shape- 
memory oscillator using a modified Ivshin and Pence 
(1994) model  and «considered both isothermal and 
nonisothermal conditions under forced vibration and 
presented a rich class of solutions and bifurcations 
including jump phenomena, pitch fork, period doubling, 
complete  or  incomplete  bubble  structures  with  a 
variety of nonperiodic responses. Results presented in 
Lacarbona et al.  (2001) show  that for the  range 
of parameters   investigated,  the  nonisothermal  and 
isothermal response were similar to each other. Work 
presented by Lacarbona et al. (2001) is based on an 
earlier work by Bernardini and Vestroni (2002), where 
nonlinear dynamic nonisothermal response of pseudo- 
elastic shape memory oscillators have been presented. 
Softening as well as hardening behavior is noted as the 
SMA undergoes partial and full phase transformation 
under varying force excitation amplitude, hysteresis 
shape, and temperature. Recent work by Collet et al. 
(2001) have studied the behavior of a pseudoelastic 
SMA (Cu-Al-Be) beam under dynamic loading for 
potential vibration isolation applications using a SMA 
constitutive model presented in Ranjecki et al. (1992). 
Simulations and qualitative experimental observations 
presented in Collet et al. (2001) have shown that the 

nonlinearity in the SMA beam response is due to the 
SMA undergoing phase transformations. 

Based on the work done on SMA-based dynamic 
systems mentioned in the above publications there is a 
need to explore the effects of SMA pseudoelasticity on 
vibration isolation by performing actual experimental 
correlations and conducting parametric studies under 
various dynamic loading conditions on an actual SMA- 
based vibration isolation device. In this two-part paper 
series, an attempt has been made to address these issues 
by developing, simulating, testing, and performing 
parametric studies and experimental correlations on a 
pseudoelastic.SMA vibration isolator. 

SMA Models 

To realize the goal of designing and simulating an 
active material-based smart structure for vibration 
isolation using SMAs, it is necessary to have structural 
models that can (a) incorporate response of SMAs and 
(b) can be used for prediction and experimental 
correlation of dynamic response of such structures. 
Along with the SMA models mentioned in the previous 
section that have been mostly used for simulating SMA- 
based dynamic systems, most of the other SMA 
constitutive models available in the literature do not 
serve this dual purpose well. Studies of other SMA 
constitutive models available in the literature (Tanaka, 
1986; Patoor et al., 1987; Liang and Rogers, 1990; 
Brinson, 1993; Lagoudas et al., 1996; Lagoudas and Bo, 
1999) and their utilization for various SMA-based smart 
structure applications reveal that although these models 
are quite accurate, they are computationally intensive 
and/or hard to implement under dynamic loading 
conditions. 

Empirical models based on system identification (ID) 
have also been used for modeling the response of 
different active materials and one of the most popular 
models has been the Preisach model. The classical 
Preisach model was initially proposed in the 1930s by a 
German physicist Preisach (1935) for ferromagnetic 
hysteresis effects and still is the most popular hysteresis 
model for ferromagnetic materials. In 1970s and 1980s, 
a Russian mathematician Krasnoselskii (Krasnoselskii 
and Pokrovskii, 1983) examined and developed the 
mathematical properties of the Preisach model and 
presented the model as a spectral decomposition of relay 
operators. As a result, a useful mathematical tool 
evolved in the form of the Preisach model which could 
model various hysteretic behaviors found in nature, 
without concern for the underlying physical mecha- 
nisms. The reader is referred to comprehensive exposi- 
tions on the Preisach model by Mayergoyz (1991), 
Brokate (1994) and Visintin (1994) for a detailed ana- 
lysis and explanation. 
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The generality and the computational efficiency of 
the Preisach hysteresis model made it applicable to the 
development of controller designs (Ge and Jouaneh, 
1995; Hughes, 1997) and stability analysis (Gorbet et al., 
1997) of hysteretic ferromagnetic, ferroelectric, and SMA 
actuators. Most of the work done to date on using the 
Preisach model has been focused toward ferromagnetic 
and ferroelectric materials, mainly on their application 
as actuators. Recently the Preisach model has been 
adopted for use in SMA applications. The suitability of 
the model for representation of SMA actuator hysteresis 
has been tested by Hughes (1997); Hughes and Wen 
(1994); Banks et al. (1996a, b, 1997) and Webb (1998) 
and work has progressed toward adaptive control, 
stability analysis, and control techniques (Gorbet et al., 
1997,1998). As the Preisach model is solely concerned 
with system identification and relies on additional 
identification experiments in case of any change in 
system conditions, Bo and Lagoudas (1999b) have 
correlated a thermomechanical model for SMA shape 
memory effect response with the Preisach hysteresis 
model to avoid the need for additional identification. 

However, the above mentioned works are focused on 
the''shape memory effect or the actuator applications 
of SMAs, while work done on pseudoclastic modeling 
of SMA hysteresis using the Preisach model is limited 
and only addressed in few publications. In work done 
by Huo  (1991), the author describes a complica- 
ted extension of the Preisach model for pseudoelastic 
response of SMAs using a four-parameter hysteresis 
operator for each SMA crystal. The model is compared 
to experimental data for an unspecified polycrystalline 
material and the technique for identifying the complex 
model is not defined in detail and only qualitative results 
are given. Ortin (1992) has applied the classical Preisach 
model to a single crystal Cu-Zn-Al SMA which has 
more profound hysteresis than binary Nickel-Titanium 
(NiTi) SMA. Ortin's work demonstrates that the two 
major properties of Preisach model, the minor-loop 
congruency and the wipe-out property holds true for 
Cu-Zn-Al SMA. The control parameter was stress, the 
observed parameter was strain and all the tests were 
performed at a constant temperature. A good match 
has  been  observed  between  simulated  output  and 
experimental data. Song et al. (1999) have also devel- 
oped a Preisach model for pseudoelastic polycrystalline 
Nitinol   SMA   wires   and   shown   the   effectiveness 
of modeling pseudoelastic SMA response. However, 
as the Preisach model is solely concerned with system 
identification, any change in the system conditions 
require additional identification. In order to correlate 
the model with the physical process involved in the 
nonlinear hysteretic behavior of SMAs and to avoid 
additional identification in case of any change in system 
conditions, Lagoudas and Bhattacharyya (1997) have 

SMA response with the Preisach hysteresis model. Since 
a key issue for the application of the model to describe 
a specific material is to determine the Preisach weighting 
function, Lagoudas and Bhattacharyya (1997), intro- 
duced a single crystal hysteresis model, and by using 
appropriate averaging, estimated the weighting function 
or the distribution function for a polycrystalline SMA. 
The work presented in Lagoudas and Bhattacharyya 
(1997) and Bo and Lagoudas (1999b) is quite extensive. 
However, it leads to intensive computations, is difficult 
to implement and does not serve the purpose of having 
an accurate model suitable for design optimization 
analysis and simulation of dynamic systems. 

In this work, a dynamic system with SMA spring 
components is investigated through numerical simula- 
tion and experimental correlation. This work is moti- 
vated by the need to model and'experimentally validate a 
prototype of a SMA-based isolation system (Mayes and 
Lagoudas, 2001) and is a continuation of earlier works 
(Lagoudas et al., 2001a; Khan and Lagoudas, 2002; 
Lagoudas et al., 2002) presented by the authors in recent 
conferences. The vibration isolation device presented in 
this work consists of layers of preconstrained SMA tubes 
undergoing pseudoelastic transformations under trans- 
verse dynamic loading. This study is presented as a two- 
part paper and Part I of this paper discusses the work 
done on modeling the structural pseudoelastic SMA 
tube response. SMA tubes are modeled and referred to as 
the SMA spring elements in the two-part paper. Outline 
of Part I is as follows: first a brief description of the 
vibration isolation device is presented. The experimental 
description is followed by an adaptation of the Preisach 
model (Preisach, 1935; Mayergoyz, 1991; Hughes and 
Wen, 1994; Ge and Jouaneh, 1995; Gorbet et al., 1998; 
Webb, 1998; Khan, 2002) for the structural pseudoelastic 
SMA tube response in order to utilize the accuracy, 
generality, and computational efficiency of a system 
ID-based model, especially for the purpose of design 
optimization of the prototype device and performing 
experimental correlations. 

For the sake of quantifying effects of pseudo- 
elasticity on a wide range of system parameters like 
SMA operating temperature, hysteresis, structural 
stiffness, hardening, softening, and displacement due 
to phase transformation, a computationally efficient, 
physically based model is also presented. This physically 
based SMA model is referred in the text as the simplified 
SMA model. Even though the simplified model is 
not unique in the literature and can be considered as 
a special case of the work done by earlier authors, 
its implementation in the form of this work as applied 
to vibration isolation has not been observed in the 
literature which becomes evident in Part II of this 
two-part study. 

In this part, in addition to the modified Preisach 
r«/-.H(»i  the need for effective data collection for system 
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identification has also been presented by identifying 
a Preisach model from the simplified model followed by 
comparison of the Preisach model and the simplified 
model with the actual pseudoelastic SMA tube response 
and conclusions. 

Part II of this two-part paper discusses the effect 
of the hysteresis and change in stiffness on a dynamic 
system by presenting numerical simulations of a generic 
pseudoelastic SMA spring mass system followed by 
simulations of a system based on the prototype device 
utilizing the models developed in Part I. Detailed 
description of the prototype device along with actual 
experimental results are also presented in Part II 
followed by experimental correlations of model predic- 
tions with the actual results and concluding remarks for 
the two-part paper series. 

BRIEF DESCRIPTION OF THE EXPERIMENTAL 
SETUP AND FINITE ELEMENT ANALYSIS 

An experimental device was built to determine the 
effectiveness of SMAs when the SMA pseudoelastic 
response is used in a dynamic system. SMA tubes were 
chosen to investigate the validity of SMA spring 
elements as vibration isolators due to ease in manufac- 
turing and availability of SMA tubes. In this device, 
layers of thin-walled SMA tubes loaded in a transverse 
direction in compression were used to support the mass, 
which was subjected to base excitations. The tubes were 
acquired from SMA, Inc. and were manufactured from 

Nitinol with a diameter of approximately 6 mm and a 
wall thickness of approximately 0.17mm. The tubes 
used in the experiment were cut to 10 mm in length. 

A schematic of the shaker configuration with the 
SMA spring-mass system attached is shown in Figure 2, 
where  SMA  tubes have been  shown  as  nonlinear 
springs.   A   typical  pseudoelastic  force-displacement 
response for a single SMA tube tested in compression 
at 25°C is shown in Figure 3; and as mentioned earlier, 
the SMA tube force-displacement response is referred 
to as the SMA spring force-displacement response. 
It should be noted that this is the structural response 
of a SMA tube, not the constitutive response of the 
SMA itself. The mechanical test for a single tube was 
performed on an MTS servo-hydraulic load frame with 
a TestStar Ilm controller under displacement control. 
The SMA tube was loaded transverse to the longitudinal 
axis in increments up to approximately 70% reduction 
in diameter. Various MTS cross-head displacement 
loading rates were used ranging from 0.016mm/s to 
0.3 mm/s at different temperatures ranging from 25 to 
65°C, all of which yielded similar force-displacement 
responses. The tube response showed maximum 5% 
of increased hardening at higher testing temperatures 
and all loading rates as higher stresses are required to 
induce the austenite to martensite phase transformation 
(Figure 1). 

The small change in the force-displacement curves for 
different temperatures was attributed to the fact that 
only very small parts of the SMA tube were undergoing 
phase transformation. To validate this observation, the 
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. Figur» 2.  Schematic of shaker and SMA spring-mass isolation system as tested. 
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Figure 3.  Pseudoelastlc force-displacement response (In compression at 2S°C) of a SMA tube used in the vibration isolation device. 

Figure 4. Finite element simulation of a SMA tube under transverse loading (undertormed configuration). 

response of a single SMA tube was modeled using finite 
element analysis (FEA). Transverse loading similar to 
the actual tube loading was applied by compressing 
the SMA tube in between two rigid plates as shown in 
Figure 4. The following boundary conditions were 
considered for the FEA: the plates were constrained 
to only move in the vertical direction along the vertical 
(;c2) axis, the tube at the center along the horizontal 
(*i) axis was constrained to move only in the vertical 
direction. At the points of contact between the tube 
and the rigid plates the tube was constrained to only 
move in the vertical direction. An incremental point 
load of maximum 160W was applied to the top plate and 
the tube Finite element mesh was created using 1000 
2D-quadratic generalized plain strain elements. A user 

material subroutine (UMAT) was used to model the 
SMA constitutive behavior in a commercial FEA 
package ABAQUS (HKS, 1997). The SMA constitutive 
model used for the FEA is a fully coupled thermo- 
mechanical model and has been presented in (Lagoudas 
et al., 1996; Lagoudas and Bo, 1999). The reader is 
referred to Qidwai and Lagoudas (2000) for explanation 
of the numerical algorithms developed for modeling the 
SMA constitutive response using UMAT. The FEA was 
performed on an IBM Regatta p690 supercomputer 
running Digital Unix V4.0E. 

Figure 5 shows the tube in an intermediate deforma- 
tion state after 80W load has been applied. Figure 6 
shows the deformed tube under full 160./V loading. 
Figure 6 also shows the amount of phase transformation 
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Figure 5. Partially deformed configuration of a SMA tube under transverse hading. 
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Rgura &  Deformed SMA tube configuration with martensitlc volume fraction shown for high-stress concentration areas. 

or the martensitic volume fraction of the deformed tube 
and illustrates limited phase transformation in small 
areas around the contact points between the tube and 
the loading plates and at outer and inner surfaces at 
points of stress concentrations (magnified in Figure 6). 
Results of the FEA shows less than 3% of the tube cross 
section undergoing phase transformations with more 
than 50% of the material transforming into martensite 
mainly around the area shown in the magnification in 
Figure 6. An additional 5% of the tube cross section 
shows transformation of more than 10% near the tube 
and plate contact points. 

Based on the experiments and the small amount of 
SMA transforming as a result of the FEA, the authors 
have concluded that even though locally the increase or 

decrease in the SMA tube temperature due to latent heat 
of» phase transformation may be significant especially 
under dynamic loading conditions, the overall structural 
response is not drastically affected. This is justified 
because heat conduction and heat convection to and 
from the tube will cause the tube to reach a steady-state 
temperature close to the ambient environment at steady- 
state dynamic response. And, as it will be shown later in 
Part II for a given input excitation loading, as frequency 
increases the amount of SMA tube undergoing phase 
transformation decreases. Hence, temperature effects 
are assumed to be negligible for the SMA tubes used in 
this work. 

Details of the vibration isolation test setup along with 
experimental results will be presented in Part II of this 
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two-part paper. Figures 2-6 have been introduced to 
show the difficulty in efficiently modeling such a SMA 
structural response for performing design optimization 
of the vibration isolation device along with experimental 
correlations and simulation of the dynamic system using 
the constitutive models mentioned in the previous 
section. Hence a Preisach hysteresis model (system 
ID-based model) was identified for the SMA tube 
response and will be presented in the following section. 

MODEL DESCRIPTIONS 

Preisach Model Adaptation for Pseudoelastic SMA 
Tube (Spring) Response 

The classical Preisach model as stated earlier can be 
expressed as a weighted combination of relay operators. 
Figure 7(a) shows a classical Preisach hysteresis relay 
operator Hafi[8(t)]. The relay operator can be explained 
by a rectangular loop where a and ß correspond to "up" 
and "down" switching values of the input respectively 
and it is assumed that a > ß. The rectangular loop 
can also be associated as a simplified representation of 
actual pseudoelastic SMA response. Works done by 
Webb (Webb, 1998; Webb et al., 1998) have shown that 
a Krasnoselskii-Pokrovskii (KP) (Krasnoselskii and 
Pokrovskii, 1983) type of hysteresis operator, gives a 
better representation of SMA response. The KP type 
operator is a smooth hysteretic operator with continu- 
ous branches rather than jump discontinuities like the 
Preisach operator. However, in this work, the developed 
model would be used to solve a SDOF system to 
simulate a dynamic system response. As a first step, 
a modified Preisach operator was implemented to 
account for pseudoelastic SMA spring element response 
rather than the KP operator. 

The classical Preisach operator output is either +1 or 
-1 based on the value of the input. The operator output 
and input values are governed by the position of the 

HajW 
+1 

Haßlüni 

7 
-1 

TT 

(a) (b) 

system or material response in the planar quadrants. 
As shown in Figure 3, the SMA pseudoelastic response 
can be represented either in the first or the third 
quadrant depending on the SMA element response 
undergoing tension or compression. In this work, the 
SMA element response corresponds to SMA tube 
undergoing compression under transverse loading. 
Therefore, the output value of the hysteresis operator 
used in this work has been modified to 0 or 1, as shown 
in Figure 7(b). 

The mathematical form of the classical Preisach 
model is given as 

/ SMA(0 = jj^ ß)Haß[S(t)}dctdß (1) 

a>ß 

where S(t) is the input and represents displacement for 
the SMA spring elements, Haß[S(i)] ,represents hysteresis 
relay operators with different a and ß values containing 
the hysteresis effects and depends on 8(t). Here a and ß 
correspond to increasing and decreasing values of 
displacement. p(a, ß) represents the weighting function 
in the Preisach model, it describes the relative contribu- 
tion of each relay to the overall hysteresis and/SMA(0 is 
the output representing force generated by the SMA 
spring element and depends on the displacement history. 
The double integration presented in Equation (1) can be 
interpreted as a parallel summation of weighted relays 
as shown in Figure 8. 

The weighting function n(a,ß), also refeired in the 
literature as the Preisach function is described over a 
region P, this region is referred to as the Preisach plane, 
where each point in P represents a unique relay. Based 
on the explanation given on the Preisach Model in 
Mayergoyz (1991); Hughes and Wen (1994) and Gorbet 
et al. (1998), the weighting function is defined over 
displacement (input) range, i.e., the domain of hyste- 
resis exists between ämin and &mu- a and ß represents 
increasing and decreasing displacement values respec- 
tively, where the upper bound on a is given by S^ax and 
the lower bound on ß is given by 8mi„. These two 
conditions along with the condition given in Equation 
(1), which defines the double integration to exist over a 
surface where a > ß, restricts P to a triangle. Figure 9 

H^ _ uX<X,ß) 

H, aß -| H(a,ß) 

Ftgun 7.  (a) Classical hysteresis operator; (b) modified hysteresis 
operator , 

Haß_tKa,ß) 

Figure 8. Schematic of Preisach model. 
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shows the schematic of the Preisach plane adapted for 
the work presented in this paper. 

It must be noted that, according to Figure 7(b), 
H«,ßW)] can only take the values 0 and 1 (only in 
tension or compression of the SMA spring element). 
Thus, Equation (1) reduces to 

/5MA(0 
= //< 

S+(t) 

ß(a,ß)dadß (2) 

where S+ is the region (shaded region shown in Figure 10 
where a > ß) containing all the relays operators in +1 
state at time t. The other relays outside the shaded area 

a 

'max 

8mJ  

'nun max 
Figure 9.  The Preisach plane. 

ß 

are in zero state. There is a one-to-one correspondence 
between the relays Hayß and the points (<x,ß) within 
triangle area where (a > ß). 

Figure 10 shows the geometrical interpretation of the 
Preisach model, it can be seen that the integration 
support area is changing with input extrema. Not all the 
input extrema are remembered by the model. The input 
maximum wipes out the vertices whose a coordinates 
are below this input, and each input minimum wipes 
out the vertices whose ß coordinates are above this 
minimum. This is the wiping-out property of the model 
and in essence shows the dependency of output on 
previous dominant input extrema. The loading path 
dependency as demonstrated by the pseudoelastic SMA 
response is represented by the wiping-out property of 
the Preisach model. 

As the input increases, a horizontal line moves in the 
positive a direction in S, changing all the relay outputs 
below the line to +1 state. As the input decreases, 
a vertical line moves in the negative ß direction in S, 
changing all the relay outputs to the right of the line all 
to 0 state. 

As shown in Figure 10, at the starting point f0. the 
input is at zero and all the relay outputs are in zero 
(Figure 10(a)) state. As the input increases to at at t{, 
a horizontal line moves to c*[ from zero, the outputs 
of the relays above the line switch to +1 (Figure 10(b)). 
From t2 to f3, the input is lowered to ß\, a vertical line 
sweeps down to ß\ changing some relay outputs back to 
zero (Figure 10(c)). When the input is increased again 
to Ü2, some relays are changed to +1 (Figure 10(d)). 

«m; 

u- i t = to 
nax 

Sh=0/ 
( 

ßo >—* 

af   t,<t<t2 
«max 

a A t3<t<t4 

«max 
a, 

$0 öCTß        ßo «max     ß ßo   ß, 

Figure 10.  Evolution of outputs over the Preisach plane. 
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The output/SMA(/) at each time t is simply the integral 
of ß(a, ß) over S weighted by the corresponding relay 
outputs. A constant input will keep the output constant 
as well. 

Another characteristic property of the classical 
Preisach model is called the congruency property. 
If the input continues to vary between two consecutive 
values, from Figure 10, it can be shown that the output 
would vary periodically as well. The two Preisach 
model properties mentioned above constitute the 
necessary and sufficient conditions for a nonlinear 
history-dependent hysteresis to be represented by the 
Preisach model. The reader is referred to Mayergoyz 
(1991) for further explanations on the classical Preisach 
model. 

IDENTIFICATION OF THE 
PREISACH FUNCTION 

The Preisach function or the weighting surface for any 
hysteretic system, in this case a SMA spring element, 
can be easily determined from experimental data. This 
experimental data must contain what is defined as the 
"first-order transition (FOT) curves. The procedure 
is as follows. First, the input 8(t) is brought to its 
minimum 5mm which is represented as ßo in 
Figure 11(a). Then monotonically increased to some 
value a\, as the input is increased from Sm\a, an 
ascending branch of a major loop is followed, which is 
also referred to as a limiting branch in the literature 
(Mayergoyz, 1991). /„, represents the output corre- 
sponding to a\, the input is now decreased monotoni- 
cally to a value ß\ and the corresponding output is 
described as faißt. The term first-order describes that 
such curves are obtained after the first reversal of input, 
note that FOT can also be obtained by first-order 
descending curves as well. The corresponding a-ß 
diagram is shown in Figure 11(b). To derive the 
weighting function in terms of FOT curves we introduce 
a function F(a, ß), 

which represents the change in force as the displacement 
changes from ct\ to ßx. Equation (3) can also be 
represented as 

*■(«!, A) 

r(o,,A) 

ix{a,ß)dadß (4) 

The weighing function is obtained by taking the partial 
derivatives of Equation (4). 

ß{ax,ß\) = - F(auß\) 
daidßi 

(5) 

F(auß\)=fai -/«,/), (3) 

However, in order to avoid the double numerical 
differentiation of F{a\,ß\) to obtain (i(ct\,ß\), the 
function F(a\,ß\) itself, is used to obtain the expression 
for the force, rather than Equation (2). This helps in 
avoiding amplifying errors in the experimental data and 
simplifies the numerical implementation of the Preisach 
model. Note that the F(a,ß) function can also be 
addressed as the FOT function. 

DERIVATION FOR NUMERICAL 
IMPLEMENTATION 

Explicit expressions for force in terms of F(oc,ß) 
can be subdivided into subcases based on increasing 
and decreasing displacement. For an increasing dis- 
placement (Figure 12(a)) ,/SMA(0 is a double integral of 
the weighted function p(a, ß) on a region circumscribed 
by a set of links whose final segment is a horizontal line 
as shown in Figure 12(b). Starting from Equation (2) we 
can represent/SMA(f) as 

/SMA(0 = ff /*(«, ß)da + ff n(a, ß)dct 

ffß(a,ß)dadß 
Si«) 

= [F(außo)-F(außi)] + [F(a2,ßi) 

-F(a2,ß2)] + F(S(t),ß2) 

= f>(at,ßk-x) - F(ak,ßk)} + F(S(t), ßk)    (6) 

S.(0 

+ 

a 

S+ 

T(a„ p,) 

ßo P,        a,    8      ß0     ß, 

(a) (b) 

Figure 11.   Schematic of identification input. 

f * CCA 

ß0ß,ß2       8(0 a2 a,    8      ß0 ß, ß2 
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Figure 12.   Schematic for increasing input. 
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where the integration is equivalent to summation of 
the trapezoids within the S+(f) region, which can be 
generalized as shown in Equation (6). 

Similarly, for decreasing displacement as shown in 
Figure 13(a), /SMA(0 is a double integral of the 
weighted function' /x(a, ß) on a region circumscribed by 
a set of links whose final segment is a vertical line as 
shown in Figure 13(b). Starting from Equation (2) we 
can represent/SMA(r) as 

/SMA(0 = [F{auM _ f(o,, A)] + [F{a2,ßx) - F(ct2,ß2)] 

if-i 

= Y}F(ctk,ßk-0-F(ctk,ßk)] 
Jh. I 

[F(aN,ßN-i)-F(aN,(8(m (7) 

Equations (6) and (7) give the necessary increasing and 
decreasing displacement expression in terms of the 
measured FOT data. 

ßoß.fc 5(t) <x3 CC2 a,    8     ftfcMW 

(a) (b) 
Figure 13.- Schematic for decreasing input 

FIRST-ORDER TRANSITION (FOT) DATA 
COLLECTION AND MODEL IDENTIFICATION 

In order to perform the first-order transition (FOT) 
data collection a pseudoelastic SMA tube (spring 
element) was loaded in the transverse direction in 
compression. The SMA tube was subjected to a 
range of displacements [0,4] mm which corresponds to 
t^min. <5max] and represent the lower and upper bound on 
displacements. The displacement range was subdivided 
into 13 subranges of orders pairs {5(}1=0 >(I leading to 
n/2{n+ 1) FOT data points for all pairs (Sh8j) with 
j < i. Force-displacement tests were performed on an 
MTS servo-hydraulic load frame with a TestStar Ilm 
controller under displacement control at 25° C. The 
displacement input used for the FOT curves is given in 
Figure 14 and the corresponding force-displacement 
diagram is shown in Figure 15. Figure 16 shows a 3-D 
plot of the FOT data obtained from Figure 14. 

Theoretically greater amount of FOT curves collected 
lead to more accurate hysteresis modeling, however this 
amounts to greater memory storage requirements and 
lower computational efficiency. Hence a trade-off needs 
to be exercised on accuracy compared to computational 
efficiency. The effects of choosing less number of FOT 
data points are shown in Figures 17 and 18, where 
Preisach models identified by using 15 and 45 data 
points are shown. This corresponds to subdividing the 
input displacement range into 5 and 9 subdivisions with 
a difference of 1.0 mm and 0.50 mm respectively. Since 
the objective is to have a computationally efficient 
model for predicting dynamic response without com- 
promising on accuracy and computational efficiency 91 
FOT data points have been considered for the final 
identification. This was the reason for having the 

20 40 60 80 100 120 140 160 
Index 

Figure 14.  Identification displacement (input). 
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Figure 15.  Experimental first-order transition (FOT) curves. 

Figure 16.  Experimental first-order transition (FOT) data. 

displacement range subdivided into 13 subranges. 
Figure 19 shows the experimental data along with the 
91 data points used to generate F{ct,ß) function. The 
Preisach model simulated using the F{ct,ß) function is 
also shown in Figure 19. 

FIRST-ORDER TRANSITION (FOT) DATA 
NUMERICAL INTERPOLATION 

To account for input displacements which do not 
correspond to any stored FOT curves, numerical inter- 
polation is required to find out the output force. Figure 
20 shows a schematic of the Preisach plane, where the 
a, ß mesh represents experimentally identified FOT data 

points. A typical displacement input which does not 
correspond to any stored FOT data points is also shown 
on the Preisach plane. At first, the interpolation proce- 
dures relies on identifying the history of the input ak, ßk. 
This is followed by identifying the rectangular or 
triangular cell to which ak,ßk belong. A linear inter- 
polation is used to evaluate F(ak,ßk). Equation (8) 
represents the rectangular cell case, where the coeffi- 
cients r,=i 4 are obtained for each rectangular cell, by 
solving equations of the form given in Equation (8) for 
each vertex of the rectangular cell. 

Fiptk, ßk) = r{+ r2ak + r3ßk + r4akßk (8) 
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— Experimental data 
•    15 FOT data points 

— kterrtfled Preisach model 
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Figure 17.  Identified Preisach model using 15 data points. 
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Figur« 18.  Identified Preisach model using 45 data points. 

-0.5 

Equation (9) represents the triangular cell case, where 
the coefficients r,=i 3 are obtained for each triangular 
cell, by solving equations of the form given in Equation 
(9) for vertices of the triangular cell. 

F(otk,ßk) = t\ + ':«* + /j& (9) 

Figure 21 shows a random displacement input which 
does not contain any identified FOT data points, the 
corresponding response using the calibrated Preisach 

model using 91 data points (see Figure 19) is shown in 
Figure 22.  . 

Physically Based Simplified SMA Model for 
Pseudoelastic SMA Tube Response 

In addition to accurately modeling and experimen- 
tally validating the SMA-based vibration isolation 
device mentioned earlier, another goal of this study 
was to numerically explore the effects of pseudoelasticity 
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Figure 19.  Identified Preisach model using 91 data points. 
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Figure 20.  Numerical interpolation schematic. 

on vibration isolation under a wide range of dynamic 
system conditions. To explore a broad range of system 
conditions like excitation amplitude, mass, number of 
SMA spring elements and initial conditions an efficient 
and qualitative representation of the SMA spring 
element force-displacement response with flexibility to 
change structural stiffness, hysteresis width, and operat- 
ing temperature was needed. Therefore to aid in 
performing parametric studies a physically based 
simplified SMA model has also been calibrated based 
on the pseudoelastic SMA tube structural response and 
the following subsection discusses its development. 

The simplified model is capable of predicting the 
behavior of a SMA spring element at temperatures above 

the austenite finish temperature, (Aof), the temperature 
at which the reverse transformation from martensite to 
austenite is complete. Additionally, this model is 
displacement driven and is dependent on the loading 
history to correctly predict the forward and reverse 
transformation behavior and the minor loop behavior of 
a SMA structure. The basis of the model is the 
assumption that the relationship between force and 
displacement in a SMA structure at temperatures above 
A0f can be represented by a series of linear segments.The 
model is based on earlier work done by Lagoudas et al. 
(2001b) and the following description extends the work 
presented in Lagoudas et al. (2001b) to account for force- 
displacement response of a SMA tube loaded in the 
transverse direction and modeled as a spring. 

From   a  typical   pseudoelastic  force-displacement 
compression test (Figure 23) of the SMA tube used in 
the  prototype device,  performed  at a temperature 
greater than Aof, the equivalent spring stiffness of the 
SMA structure in austenite (KA) and martensite (KM) 
can be obtained as well as the maximum value of 
transformation   displacement   (5£ax).   As   mentioned 
earlier, the force-displacement test shown in Figure 23 
is for a SMA tube used in the prototype device, which is 
loaded in compression in a transverse direction and 
should not be considered as SMA material response. 
Pseudoelastic SMA material response shows higher 
material stiffness in austenite compared to martensite. 
However, for the structural response shown in Figure 23, 
as the displacement increases, even though parts of 
the tube are undergoing phase transformation, due to 
the deformed geometry of the tube, the equivalent 
spring stiffness of the tube in the martensitic phase (KM) 
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flgun 21. Random displacement input not corresponding to identified data points. 
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figure 22.  Calibrated Preisach model force-displacement response for random displacement input (Figure 21). 

is greater than the equivalent spring stiffness of the tube 
in the austenitic phase (KA). Through the use of a 
Differential Scanning Calorimeter (DSC), the tempera- 
tures at which transformation occurs under zero stress 
can be determined. 

For representation of force-displacement pseudo- 
elasticity of a SMA structure, in this case SMA tubes, 
a structural force-temperature diagram describing the 
relationship between force, displacement, and the spring 
element   phase   can   be   constructed   by   one   DSC 
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Flau« 22.  Pseudoelastic force^ispiacement response of a SMA tube with eouMent spring stiffness of austenite phase, eouivalent spring 

stiffness of martensite phase, and transformation displacement labeled. 
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Figure 24.  SMA spring element, force-temperature diagram with pseudoelastic loading path. 

measurement and one pseudoelastic response test, as 
shown in Figure 24. The assumption is made that 
the lines marking the transformation boundaries are 
parallel, which strictly speaking is not necessarily 
correct but for the purpose of this model it does 
allow for a simplified representation of the pseudo- 
elastic response. In this case, the zero stress transforma- 
tion temperatures and the slope of the transformation 
boundaries are chosen based on the pseudoelastic res- 
ponse and the DSC tests, but modified slightly so that 

the pseudoelastic force-displacement relationship is 
preserved for the structure. Another simplification is 
in the selection of the transition points between elastic 
loading and transformation. Due to the nonuniform 
stress state and polycrystalline nature of SMA tubes, 
some areas of the material begin to transform before 
others, resulting in the smooth transitions seen in 
Figure 23. However, the simplified model presented 
here requires specific transition points (Points 1-4 in 
Figures 23-25) at which to begin and end the forward 
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8Af 8Ms 

Figur» 25.  Calculated pseudoelastic force-displacement response of SMA. 

and reverse transformation, hence, points are chosen so 
that the pseudoelastic force-displacement relationship is 
preserved. Once the simplifications are made and the 
appropriate constants are chosen, the simplified model 
utilizes the force-temperature diagram (Figure 24) to 
create a piecewise linear representation of the pseudo- 
elastic response of the SMA spring (tube) element shown 
in Figure 23. 

From the force-temperature diagram, and given that 
the temperature of the SMA is known and constant, it is 
possible to calculate the forces at which'the forward and 
reverse transformations begin and end from Equation 
(10) where /' is the force, C is the slope of the trans- 
formation boundary in the force-temperature plane, 
T is the temperature, and T, is the zero-stress transition 
temperature determined from the DSC results for the 
respective transition. 

f' = C{T-T,) (10) 

Additionally, the constitutive relation for SMA can be 
modified to yield Equation (11), where Kp is the 
respective stiffness of either austenite, martensite, or a 
mixture of the two phases, S is the total applied 
displacement and 5tr is the transformation displacement 
of the SMA. Transformation displacement for a force- 
displacement model is equivalent to the transformation 
strain for a stress-strain model. 

forward and reverse transformations, one can calculate 
the displacement at which transformation will occur. 
Using this data, one can construct the following force- 
displacement diagram as shown in Figure 25 using 
only the material parameters mentioned above. For 
this simplified model of pseudoelastic loading, the 
transitions delineating the beginning and end of forward 
and reverse transformation are dependent only upon the 
ambient temperature and the material parameters, 
including the zero load transition temperatures, the 
transformation displacement and the stiffness of the two 
phases. For the beginning of the austenite to martensite, 
or forward, transformation (Point 1 on Figure 25), the 
corresponding force and displacement are calculated 
from Equations (12) and (13). 

fMs = C(T-M01) 

&Ms = 
CjT-M01) 

KA 

(12) 

(13) 

For the end of the forward transformation (Point 2), the 
corresponding force and displacement are calculated 
from Equations (14) and (15). 

CiT-MW) 
f = KJS - 8«) (ID &hff = 

K.W 

(14) 

(15) 

Given that the material state is assumed to be known at 
the beginning and end, of transformation  for  both 

For the beginning of the martensite to austenite, or 
reverse, transformation (Point 3), the corresponding 
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force and displacement are calculated from Equations 
(16) and (17). 

fAs = C(T-A0*) 

C(T- A0s) 
&As = 

KM 

(16) 

(17) 

For the end of the reverse transformation (Point 4), the 
corresponding force and displacement are calculated 
from Equations (18) and (19). 

fAf = C{T-AV) 

C(T- A0') 
&Af =■ KA 

(18) 

(19) 

Assuming piecewise linear response and combining all 
of this information together will result in completely 
determining the force-displacement response of a 
SMA for a full loading induced transformation cycle, 
as shown schematically in Figure 25. The effects of 
latent heat due to the rate-dependent release and absor- 
ption of heat during pseudoelastic phase trans- 
formations can be explicitly accounted for by choosing 
different slopes and transformation points for the piece- 
wise linear simplified SMA model. 

MAJOR LOOP RESPONSE 
To correctly predict the force-displacement response 

of a SMA, the loading path for full transformation, 
or the major loop, must be modeled. For the simplified 
SMA model, this is accomplished by assuming that both 
the transformation displacement, Str, and the force, 
/, vary linearly during transformation and that the force 
corresponds to displacement in a linear manner when 
transformation is not occurring. As a result, the SMA 
material can be modeled as a series of straight lines in 
force-displacement space, where the intersection of 
these lines correspond to the transition between elastic 
loading and transformation for forward and reverse 
transformation. This can be illustrated schematically, 
as shown in Figure 25. For elastic loading in the 
austenite region (4 -> 1), prior to the beginning of 
forward transformation, the transformation displace- 
ment remains zero and the force is directly related to the 
displacement. This is explicitly stated in Equations (20) 
and (21). 

Str = 0 

/SMA = KAS 

(20) 

(21) 

For forward transformation, the region between Points 
1 and 2, the transformation displacement varies linearly 

between zero and the maximum value of transforma- 
tion displacement, 8^. Additionally, the force level 
also varies linearly between the force levels correspon- 
ding to the beginning and end of transformation. 
Mathematically this is shown below in Equations (22) 
and (23). 

maxW/-w 

"max 
(23) 

At displacement levels above the martensite finish level, 
the region after Point 2, the force again relates linearly 
to the displacement and the transformation displace- 
ment remains at a constant value equal to S£ax. This 
relation remains true even after the onset of unloading 
until the beginning of reverse, transformation begins 
(Point 3) as shown in Equations (24) and (25). 

x» — ** 

fSMA=fMf + KM(8-8Mf) 

(24) 

(25) 

After the beginning of reverse transformation (Point 3), 
and before the transformation to austenite completes 
(Point 4), the transformation displacement again varies 
linearly, this time between 5max and zero. Likewise 
the force varies linearly between the value at the start 
of reverse transformation and the value at the end 
of transformation. This is shown in Equations (26) 
and (27). 

s"=^Mi^)      (26) 

5,r 

/SMA=/4f + —ifAs-fAf) (27) 

At the conclusion of reverse transformation, the 
transformation strain is again zero and the force again 
varies linearly with the displacement, as shown in 
Equations (20) and (21). 

The force-displacement history for a major loop 
loading path for the simplified model is the same as 
shown in Figure 23. 

The major loop SMA pseudoelastic schematic shown 
in Figure 25 can also be represented by using linear 
springs and slip or frictional elements and is referred 
to as mechanism-based nonlinear hysteretic response. 
Correlations between the simplified SMA model and 
mechanism-based nonlinear hysteretic response are 
presented in Appendix A for completeness. 
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MINOR LOOP RESPONSE 
To accurately model SMAs for a particular 

application, it becomes necessary to model the minor 
loop loading cycles. Minor loop loading cycles are 
those loading cycles that do not result in complete 
transformation from austenite to martensite and back 
to austenite. From inspection of Figure 26, which 
illustrates a minor loop displacement loading path, 
it becomes clear that in order to model this behavior, 
some modifications must be made to the equations 
above to account for this incomplete transformation. 
As a result of the simplicity of this model, the 
modifications are easy to implement. The first issue 
that must be dealt with is the dependence of the current 
SMA structural behavior on the history of loading 

\ ' 

2. 
Mf *K3           * 
As 

jQ          "^V 1/ 

• 4 

Ms /             F< 
At w 

 ► 

Figure 26.  Displacement path for minor loop loading. 

of the SMA component. This can be accomplished by 
storing the maximum and minimum values of force 
displacement, and transformation displacement for the 
previous loading cycle. The second issue to be dealt with 
is the modification of the points in force-displacement 
space that initiate the beginning of forward and reverse 
transformation. The third issue relates to the stiffness of 
the SMA structure. As the SMA structure transforms 
between austenite and martensite, the stiffness of the 
structure changes between the structural stiffness of each 
phase. The stiffness at any given point during transfor- 
mation is calculated using a rule of mixtures on the 
compliance (Reuss bound). 

Figure 27 depicts a minor loop case. When loading 
from zero force in the austenite phase, the equations 
are the same as for the initial elastic loading and the 
forward transformation. However, for a minor loop 
loading path, the loading is reversed prior to completion 
of forward transformation at point R. At this point 
the maximum values of force, displacement, and trans- 
formation displacement are recorded, as they will be 
used in subsequent calculations. As unloading begins 
from point R to 3, initially there is no transformation, so 
that the unloading occurs elastically but at a stiffness 
that is neither the austenite stiffness nor martensite 
stiffness. Unloading occurs elastically from the maxi- 
mum transformation point and the slope is determined by 
maximum degree of transformation obtained. For this 
portion of the force-displacement relation, the unload- 
ing stiffness, KR, and the force are calculated as shown 
in Equations (28) and (29) where 8% fR, and SR are 
the values of transformation displacement, force, and 

/'minor 
Ms 

Ommor £ minor 

Figure 27.   Force-displacement path for minor loop loading. 
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displacement recorded when the loading path changed 
directions. 

/SMA==/ä + XJ?(5_5J?) (29) 

The transformation strain remains constant for this 
section of the loading path, since the unloading is elastic 
and no transformation occurs. As the SMA structure 
continues to unload, the path it is following will 
eventually intersect the line for major loop reverse 
transformation (Point 3), where reverse transforma- 
tion begins for minor loop loading paths. Due to 
the incomplete forward transformation, this point is 
different from the (/**,**)'pair denoting Point 3 in 
Figure 25 and is defined by Equations (30) and (31). 

/SMA=y> + **(s-af) (35) 

5 minor 
As = 8As+-üf-(&As-&Af) 

ömax 

/•minor  /•     i      R   ( f.   . 
JAS      -JAS+T^-UAS 

"max 
■fAf) 

(30) 

(31) 

As this point is reached, reverse transformation begins 
and the following equations will determine the values 
of transformation displacement and force from Point 3 
onwards. 

tminor g 
otr   ctr       ctr As 
0    — °max      °max ^minor _ g   . 

f SMA 

"As 

ttr 

"max 
-fAf) 

(32) 

(33) 

As the structure continues to unload, the force will 
decrease and the transformation displacement will go to 
zero as the material approaches Point 4 where reverse 
transformation ceases. At this point the SMA structure 
will be in austenite again and will unload elastically to 
zero load. Now, if the structure does not unload entirely 
into austenite, but again changes the loading direction 
and begins to load again, the force, displacement, and 
transformation displacement at this point must again be 
recorded. This point is shown as point F in Figures 26 
and 27. As the material begins to load from point F to 1, 
it again loads elastically at a stiffness determined by 
the minimum degree to which transformation had 
progressed. The stiffness and force level are given in 
Equations (34) and (35) where 8% fF, and 8F are the 
values of transformation displacement, force, and 
displacement recorded when the loading path changed 
directions. 

KF = 
KMKA 

Sf/S%ta(KA-KM) + KM 7T- '(34) 

From this point the SMA structure loads elastically 
until this loading path intersects with the forward 
transformation path for major loop loading (Point 1). 
This point is calculated in a similar manner to that 
used in the calculation of the beginning of reverse trans- 
formation and is again based on the intersection of the 
major loop loading path and the minor loop loading 
path. The formulas defining this point are given in 
•Equations (36) and (37). 

S^ = sMs + ^j-(8Uf-8Ms) 
Omar 

fEr=fUs+S-(fw-fa) 
"max 

(36) 

(37) 

From this point, force and transformation displacement 
for forward transformation are calculated in a manner 
similar to that used in the calculation of force and 
transformation displacement for the reverse transforma- 
tion. The equations are as follows: 

«* = , 'max 
"Ms 

x cmine 
8bif - °Ms 

8« 
/SMA = /minor +   -     {fuf _,»»«*) 

(38) 

(39) 

The continuation of loading along this path will result 
in complete transformation to martensite as described 
in the major loop section. A change in loading direction 
prior to complete transformation will result in addi- 
tional minor loops and the preceding equations are 
applicable. Figure 28 shows a typical displacement path 
that would result in minor loop loading. The resulting 
force-displacement response is shown in Figure 29. 

CALIBRATION OF THE PHYSICALLY BASED 
SIMPLIFIED SMA MODEL BASED ON THE 
PSEUDOELASTIC SMA TUBE RESPONSE 

In order to calibrate the simplified pseudoelastic SMA 
model presented here, the DSC data was combined with 
the results of a pseudoelastic compression test shown in 
Figure 24. As mentioned earlier, the mechanical test was 
performed on an MTS servo-hydraulic load frame with a 
TestStar Urn controller under displacement control and 
the DSC analysis was performed using a Perkin Elmer 
Pyris 1 Differential Scanning Calorimeter. The 10 mm 
long, 6 mm Nitinol SMA tube with a wall thickness of 
approximately 0.17 mm was loaded transverse to the 
longitudinal axis in increments up to approximately 
70% reduction in diameter. Tests were performed 
at different temperatures ranging from 25 to 65°C, 
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Figure 30. Force vs. displacement response of SMA compression spring element (tube) compared with the calibrated simplified SMA model. 

all of which yielded similar results. The tube response 
showed maximum 5% of increased hardening at higher 
testing temperatures as higher stresses are required to 
induce phase transformations (Figure 1). The small 
change in the force-displacement curves for different 
temperatures was attributed to the fact that only some 
parts of the SMA tube were undergoing phase trans- 
formation as discussed in "Brief Description of the 
Experimental Setup and Finite Element Analysis" (see 
Figure 6). 

Experimentally determined force-deflection behavior 
for the SMA spring, along with the output for the 
physically based SMA model as calibrated for use in this 
work, is shown in Figure 30. In order to calibrate 
the model for the SMA spring, it was necessary to 
implement the assumptions listed earlier concerning the 
beginning and end of transformation for both force 
displacement space and force temperature space. From 
the experimental data it is evident that the slope of the 
transformation regions in force temperature space are 
not parallel, however for this work a median value of 
5.7N/°C was chosen. Additionally, it is obvious that for 
the SMA tube, that there is not a single point marking 
the beginning or ending of any of the transformation 
regions so it was again necessary to choose a point that 
would allow for the best representation of the force- 
displacement response. As a result of these assump- 
tions it was then necessary to modify the zero load 
transformation temperatures slightly from the values 
measured during the DSC tests. The values used to 
calibrate the model are shown in Table 1 and as shown 

Table 1. Experimentally determined 
parameters for SMA model. 

M« = 12.7CC 
M°S=:-\7.9°C 
A0s = A7.9PC 
AW=21.5°C 
T=25°C 

K4 = 40kN/m 
KM = 150kN/m 
«max=2-95 mm 

C = 5.7N/m 

in Figure 30, they do provide a good representation of 
the experimental data. 

Preisach Model Identification Using Physically Based 
Simplified SMA Model 

The unique capability of the Preisach model to 
simulate any hysteretic behavior based on identification 
acted as a basis to identify a Preisach model from the 
simplified model. The main motivations behind this 
approach was (a) to determine the need for effective 
data collection for system ID-based Preisach hysteresis 
model and (b) to compare the differences in solving a 
SDOF vibration isolation system presented in Part II of 
this two-part paper series using the simplified model, 
the Preisach model identified from the experimental 
data and the Preisach model identified using the sim- 
plified model. The same displacement input as shown in 
Figure 14 is considered for identifying the Preisach 
model from the simplified model. The same 91 displace- 
ment data points has been considered as shown in 
Figure 19 and the identified model is shown in Figure 31. 
The response of the simplified model for the same input 
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Figure 32. Comparison of calibrated models with experimental response of a SMA tube in the vibration isolation device. 

is also shown in Figure 31. Note that the data points 
chosen for the experimental identification are not 
sufficient to capture the response of the simplified 
model. The difficulty in capturing the response of the 
simplified model is due to the sudden change in the 
force-displacement response corresponding to begin- 
ning and ending of phase transformation. This requires 
either additional data points or selecting different data 
points than the initial ones. This amplifies the need for 
proper data point selection for the Preisach model apart 
from the accuracy and computational efficiency conside- 
ration mentioned in "Preisach Model Adaptation for 
Pseudoelastic SMA Tube (spring) Response". Since this 

identification was done just to verify the simulation 
results presented in Part II and not to use the Preisach 
model identified from the simplified model as the model 
for simulations, hence no modifications were done. 

Model Comparisons 

Figure 32 shows the comparison of the Preisach 
model and the simplified model with the actual tube 
response. It can be seen from Figure 32 that the Preisach 
model can accurately simulate the response of SMA 
tubes compared to the simplified SMA model. The 
simplified model relies on specific transformation points 
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for denoting beginning and ending of phase trans- 
formation whereas the Preisach model can easily depict 
the gradual phase transformation. Hence, this makes the 
Preisach model ideal for simulating an actual system 
consisting of nonlinear hysteretic components with- 
out sacrificing computational efficiency. However, the 
Preisach model is limited by the need for repeated iden- 
tifications in the case of any changes in the structural 
response of such SMA components and has no physical 
correlation with SMA constitutive parameters. The need 
for repeated identification can be remedied by using 
adaptive Preisach models; however this would lead to 
decrease in computational efficiency. On the other hand 
the simplified model, since it is physically based can 
easily account for changes in the structural response of 
SMA components and is ideal for performing qualita- 
tive parametric studies by varying the phase transforma- 
tion points and changing the structural stiffness, 
hysteresis width, operating temperature, and transfor- 
mation displacement. 

CONCLUSIONS 

In Part I of this work, a physically based simplified 
SMA model suitable for SMA-based smart structures 
has been presented, where the structural response is 
predominantly influenced by SMAs. The simplified 
SMA model is computationally less intensive, can be 
calibrated very easily from simple physical tests. Hence 
it can be used for preliminary design and analysis of 
complex SMA-based smart structures. Drawbacks of the 
simplified model are that it does not capture the gradual 
phase transformation of the structure and the effects of 
latent heat can only be accounted by explicitly choosing 
different slopes and phase transformation points for the 
piece-wise linear simplified SMA model. Whereas, in 
coupled thermomechanical models the latent heat is 
accounted by an appropriate energy balance equation 
directly coupled with the constitutive response. 

A Preisach model for force-displacement response of 
pseudoelastic SMA tubes has also been presented in 
Part I of this work. The classical Preisach operator was 
modified for this study to minimize the implementation 
effort. The adopted identification implementation 
method helped in mitigating noise amplification in the 
experimental identification data and simplified the 
implementation of the Preisach model. The methodol- 
ogy followed made the Preisach model an efficient, 
useful, and an accurate tool for simulating the dynamic 
system motivated from the prototype device consisting 
of SMA tubes. The need for effective identification using 
the Preisach model has also been emphasized by 
performing an identification using the simplified SMA 
model. It has been shown that the Preisach model can 

accurately simulate the response of SMA tubes com- 
pared to the simplified SMA model. 

Part II of this two-part paper will discuss the effect of 
the hysteresis and change in stiffness on a SMA-based 
dynamic system by presenting numerical simulations of 
a generic pseudoelastic SMA spring mass system 
followed by simulations of the system based on the 
prototype device utilizing the models presented here. 
Detailed description of this device along with actual 
experimental results will also be presented in Part II 
followed by experimental correlations of model predic- 
tions with the actual dynamical tests and concluding 
remarks for the two-part paper series. 
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APPENDLX A 

Correlation of Physically Based Simplified SMA Model 
with Mechanism-based Hysteretic Nonlinear Response 

The major loop SMA pseudoelastic response shown 
in Figure 25 can also be approximated by using linear 
springs and slip or frictional elements. A schematic 
shown in Figure 33 represents one such representation 
of SMA pseudoelastic response using linear springs and 
slip or frictional elements for loading (L) and unloading 
(U) behavior. The reader is referred to similar models 
with different complexity levels using linear springs and 

SMA     K 

I II I I 

Hgore 33. Representation of pseudoelastic SMA spring behavior 
using linear springs and slip elements during (a) loading and 
(b) unloading conditions. 
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frictional elements for modeling SMA pseudoelastic 
behavior in work done by Malovrh and Gandhi (2001). 
However, the work presented by Malovrh and Gandhi 
mainly deals with nonlinear hysteretic response without 
considering the SMA response after completion of full 
phase transformation. 

In this section, correlations between the simplified 
SMA model and mechanism-based hysteretic nonlinear 
response is presented to show that physically based 
SMA models and phenomenological mechanism-based 
models found in the literature (Malovrh and Gandhi, 
2001) can be derived from each other. 

A linear spring with stiffness Kf" shown in Figure 33(a) 
represents the elastic behavior of the pseudoelastic SMA 
spring when the SMA spring is in complete austenitic 
phase and undergoing loading. The corresponding 
governing equation expressing the relationship between 
force and displacement and KA (Figure 25), is given 
below 

/SMA = KA8 

KA = Kf 

(40) 

(41) 

The onset of forward phase transformation (Point 1 on 
Figure 25) can be expressed by using a slip or a frictional 
element in series with a linear spring. The displacement 
corresponding to onset of slip is given by 8us. The linear 
strain hardening behavior during phase transformation 
is expressed by using a linear spring with stiffness Kjj 
in parallel with a slip element (Figure 33(a)). The force- 
displacement relationship during Points 1 and 2 (see 
Figure 25) is given by Equation (42) and the correlation 
of Kf- and Kfj with KA^M (Figure 25) is given by 
Equation (43) 

/        =/MS + KA-*.\{(8 - &M.i) 

KA-~M = 

(42) 

(43) 

The end of forward phase transformation and the 
strain hardening behavior seen afterwards (Point 2 on 
Figure 25) can be represented by using a linear spring 
with stiffness K\u in parallel with a slip element with slip 
displacement &MJ, acting against the displacement 
direction as shown in Figure 33. Corresponding force- 
displacement relationship and correlation of Kf.Kj), 
and Kf;, with KM is given by Equations (44) and (45). 

/SMA=/w/+ **(*-%) 

KM = 
**/ Kg Km 

KnKiit + Ki Kin + Ki Kh 

(44) 

(45) 

Figure 33(b) shows the schematic for unloading condi- 
tions. The slip element with corresponding slip displace- 
ment limit of Sjuf during loading can be recalibrated to a 
slip displacement of 8As for unloading conditions. This 
corresponds to Point 3 on Figure 25 and represents start 
of phase transformation back into the austenitic phase. 
The force-displacement relationship prior to reverse 
phase transformation is given by Equation (46), where 
as, the relationship between Kf, Kfr, and Km with KM is 
given by Equation (47). 

PtAA=fA, + KM(8-8As) 

KM = 
rUrUrU 

/// 
KgK8l + K?K%l + KyK8 

(46) 

(47) 

The slip element with slip displacement of Sus during 
loading can be recalibrated to a slip displacement of 
&Af for unloading conditions. This corresponds to Point 
4 on Figure 25 and represents end of phase transfor- 
mation back into the austenitic phase. The force- 
displacement relationship during the reverse phase 
transformation is given by Equation (48), where as the 
relationship between Kf and Kf, with KM-*A is given by 
Equation (49). 

PMA=fA/ + KM^A(8-8Af) (48) 

(49) 

After the end of reverse phase transformation the force 
varies linearly with displacement proportional to Kf 
and the relationship is same as shown in Equations (40) 
and (41). 

Equations (40M43) represent SMA major loop 
response based on hysteretic nonlinear behavior using 
a combination of linear springs with slip elements. 
Following a similar approach, expressions representing 
minor loop response can also be derived. However, 
since the purpose was only to show a correlation 
with mechanism-based models this task has not been 
performed. 

NOMENCLATURE 

a = increasing values of displacement 
ß = decreasing values of displacement 
8 = spring displacement 

SAI = spring displacement denoting end of A ■*- M 
transformation 

8As = spring displacement denoting start of A ■*- M 
transformation 

SMr = spring displacement denoting end of A -* M 
transformation 
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xMs- 

S'r = 

Omax = 

°min = 

0- 
A-- 

A°f-- 

fAf: 

fAs . 

fW 

fMs 
rSMA 

H 
KA 

KM 
M 

M°f 
M°* 

T 

spring displacement denoting start of A -> M 
transformation 
transformation displacement 
lower bound on displacement 
upper bound on displacement 

= weighing function in the Preisach model 
= stress 
= austenite phase 
= austenite finish temperature at zero stress 
= austenite start temperature at zero stress 
= force denoting end of A *- M transformation 
= force denoting start of A +- M transformation 
= force denoting end of A -*■ M transformation 
= force denoting start o(A-+M transformation 
= force exerted by SMA spring 
=hysteresis relay operators 
= stiffness of austenite phase 
= stiffness of martensite phase 
= martensite phase 
= martensite finish temperature at zero stress 
=martensite start temperature at zero stress 
= temperature 
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